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The knowledge of the spatial and temporal distribution of human population is vital for the

study of cities, disaster risk management or planning of infrastructure. However, information

on the distribution of population is often based on place-of-residence statistics from official

sources, thus ignoring the changing population densities resulting from human mobility.

Existing assessments of spatio-temporal population are limited in their detail and geo-

graphical coverage, and the promising mobile-phone records are hindered by issues con-

cerning availability and consistency. Here, we present a multi-layered dasymetric approach

that combines official statistics with geospatial data from emerging sources to produce and

validate a European Union-wide dataset of population grids taking into account intraday and

monthly population variations at 1 km2 resolution. The results reproduce and systematically

quantify known insights concerning the spatio-temporal population density structure of large

European cities, whose daytime population we estimate to be, on average, 1.9 times higher

than night time in city centers.
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Knowledge of population distribution is crucial for spatial
analysis and policy support in many domains. Yet, despite all
the progress since the inception of the first modern censuses

in the early nineteenth century and the emergence of digital car-
tography and Geographical Information Systems in the second half
of the twentieth century, our knowledge of the spatio-temporal
distribution of population remains remarkably incomplete.

The emergence of dasymetric mapping in the 1910s1 and its
rediscovery many decades later2,3, thanks to increasing access to
digital censuses, geospatial data and computing power4 con-
tributed substantially to improve the geographical representation
of population distribution. Dasymetric mapping can be described
as a smart areal interpolation method5 that operates by dis-
aggregating population counts usually available per adminis-
trative units or census zones to a finer set of zones using a
covariate of population distribution available at higher spatial
resolution. Examples of covariates typically include land use/land
cover (LULC) features (e.g., built-up and roads) or properties
(e.g., built-up density, soil imperviousness and nighttime lights)
derived from remote sensing and other geospatial datasets6–12, as
well as user-generated content from social media13,14.

Dasymetric mapping is often applied to generate population
grids or tesselations of regular squared cells with estimates of
population. Such grids help mitigate the distortions associated
with the Modifiable Areal Unit Problem15 to the extent that they
increase the spatial resolution, are less arbitrary, and remove the
original areal heterogeneity vis-à-vis the original population
enumeration zones. Population grids have become essential
inputs for the analyses of human–environment interfaces and to
support a wide range of applications by national and local gov-
ernments, non-governmental organizations, and companies,
including regional and urban planning, disaster risk management,
and geomarketing16.

Currently, there are multiple gridded population products of
varying spatial resolutions and characteristics, with global or
continental coverages4,17–19. In countries lacking up-to-date and
reliable official demographic data, small-area estimation of
population becomes possible, thanks to the increasing availability
of Earth Observation data and other emerging sources of (big)
geospatial data, computational power, and new statistical tech-
niques20. For example, in a recent application in Nigeria, popu-
lation was estimated independently from national census data,
employing a bottom-up modeling approach combining a detailed
mapping of built-up areas and a survey of local population
densities21. In Europe, reliable bottom-up population grids can be
constructed by aggregating address-based population counts
provided by National Statistical Institutes (as opposed to dasy-
metric, top-down grids), of which GEOSTAT 2011 is the most
recent compilation. For a more thorough discussion of the dif-
ferences between top-down and bottom-up approaches, please
refer to the paper from Wardrop et al.20, whereas for a recent
review more centered on top-down methods for large-scale
applications and their fitness for use, we recommend the paper by
Leyk et al.4.

The vast majority of population grids are based on place-of-
residence population counts. These maps can be used as proxies
for nighttime population distribution22, assuming that most
people stay in their declared places of residence at night for
shelter and rest. However, population is a temporally dynamic
variable, with major shifts in its distribution occurring in daily
and seasonal cycles, resulting in rapidly changing densities.
Consequently, studies requiring spatially detailed information on
population distribution are constrained to a static and incomplete
representation of this dynamic phenomenon. Shifting from place-
of-residence to place-of-activity population grids allows us to
produce spatially explicit representations of the present

population for different temporal frames. Such information is
helpful for applications where both the spatial and temporal
dimensions of population density are important, such as trans-
port planning, or assessment of human exposure to natural,
environmental, epidemiological, and technological hazards23–27.

Daytime population distribution varies greatly from that of
nighttime. The location of population during the day is deter-
mined by the location of economic, social, leisure, and other
facilities, which attract population from their residences, driving
commuting flows, and other forms of trips28,29. Therefore, it is
significantly more challenging to infer daytime population dis-
tribution than mapping nighttime population. First and foremost,
there is no single, measurable statistical concept instrumental for
daytime population as the number of residents is for nighttime
population. When a person is not present in his place of resi-
dence, he or she is likely to engage in multiple activities during
the day such as studying, working, shopping, and going for lei-
sure. Fundamentally, the locations of the presence of people are a
function of their activities. Although there are aggregate statistics
describing the size of the groups of people engaged in various
activities, these are rarely linked to the exact time and locations of
the activity. Thus, daytime population needs to be inferred from
multiple, indirect sources. This complexity helps explain the
significant delay in the development of spatio-temporal popula-
tion mapping vis-à-vis conventional resident population
mapping.

The first studies trying to map daytime population distribution
date back to the mid-twentieth century and used passenger
counts in a number of cities in the United States30,31. The few
recent case studies focused on relatively small study areas and
employed different methodologies and input data. Approaches to
map spatio-temporal population can be classified into two broad
categories as follows: (a) the ones that combine different sources
of statistical and geospatial data in a dasymetric manner, and (b)
the ones that use direct geolocated measurements of population
activity from mobile network operators, sensors, or social media.

Originally motivated by the needs of emergency response, the
LandScan population grid was an early attempt at mapping
spatio-temporal population at the global scale, at a resolution of
30 by 30 arc-seconds32. It combined census data with several
geospatial datasets to map ambient population (an estimate of the
average present population throughout the daily cycle). The
concept of ambient population, however, is of limited value for
applications requiring time-specific representations of popula-
tion. Subsequent work achieved actual daytime population esti-
mates for the whole of the United States33,34 or individual cities35.
In Europe, such estimates have been produced for relatively small
areas or single countries23,26,36. Other research37–41 focused on
increasing the temporal resolution by combining statistics and
micro data with detailed geospatial data yet, again, for specific
regions or urban agglomerations. A recent study attempted to
derive seasonal population variations in Greece from nighttime
lights from Earth observation42.

The recent emergence and increasing availability of uncon-
ventional, big geospatial data sources43 creates new opportunities
for assessing spatio-temporal population dynamics. Geotagged
posts on Twitter have been used to assess cross-border mobility
patterns44. Location history recorded by Android smartphones
has been tested to assess human mobility at micro-level45 and to
characterize the structure of cities based on spatial mobility
patterns29.

One of the most promising data sources for spatio-temporal
population originates from mobile network operators. Their data
are generated by the interaction between mobile-phone terminals
and geolocated mobile network towers, and can be used to
analyze mobility patterns of mobile-phone users28,46 and map
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spatio-temporal population densities at potentially high temporal
granularity47–50 including for specific population groups such as
tourists51,52. Although generally seen as a promising data source,
its use for systematic and large-area applications remains
unpractical for two main reasons. First, access to such data is still
limited. Operators are reluctant to release their data because of
privacy issues and lack of business models53. Even if some mobile-
phone operators agree to participate in pilot studies54, with the
current legal frameworks it is not possible to guarantee data access
from all operators across multiple countries simultaneously. A
second important issue relates to data quality and consistency.
Population estimates from either Call Detail Records or Signaling
data from a particular mobile-phone operator only represent the
population covered by that operator, whereas all operators miss
people without mobile devices (e.g., very young or old population
segments). On the other hand, double counting may occur when
the same individual carries more than one mobile device. Other
technical issues compromise the quality of the data, such as low
antenna density in rural areas (leading to heterogeneous spatial
resolution) and antenna switching in busy areas. Moreover, Call
Detail Records are particularly sensitive to temporal uncertainty
(non-continuous observations), as only certain types of events
(e.g., calls) are captured. In sum, all these issues lead to an overall
spatial and temporal uncertainty of population estimates55.
Although various developments are underway to overcome these
limitations (e.g., algorithms to correct data biases, switching from
Call Detail Records to Signaling data, and trusted smart statistics
frameworks to harmonize access to data from different opera-
tors56), substantial technical and organizational progress is still
required for a more systematic use of these data55. For a more
complete account and discussion of the state-of-the-art concern-
ing estimation of spatio-temporal population, we recommend the
recent review from Panczak et al.27.

The primary objective of this work is to produce the first
European Union (EU)-wide representation of spatio-temporal
population distribution taking into account both the seasonal and
intraday variations of population that is seamless and consistent
across countries, and which can be accessed and used free of
charge by researchers, policy officers, and practitioners in mul-
tiple fields. Due to the issues reviewed earlier, the use of Mobile
Network Operator for this continental-scale exercise was unfea-
sible. Instead, we developed a multi-layered dasymetric approach
that expands upon the generic dasymetric method by modeling
the spatial distribution of different population groups separately
and according to a selection of covariates obtained from emerging
sources of geospatial data. The output of this approach consists of
a set of 24 population grids, one daytime and one nighttime grid
for each month of the year, at 1 km2 resolution. We evaluated the
quality these grids in four EU countries, where adequate inde-
pendent data were available. We found a high level of agreement
between estimated and reference population distribution,
although generally higher for the nighttime period. The analysis
of European cities with a population above 1 million (n= 34)
revealed that, on average, daytime population densities are 1.9
times higher than nighttime densities in city centers and then
decay exponentially with distance to city center.

Results
Multi-temporal population grids. To produce the multi-
temporal population grids, we downscaled monthly stocks of
individual population groups at subnational level to grid-cell level
using a population group-specific set of spatial covariates. The
population groups included the number of residents, workers for
different economic sectors, students, tourists, and non-working
and non-studying population. The main stocks of population

groups were obtained from official statistics. The monthly var-
iations in population stocks were derived from school calendars
as well as from monthly inbound and outbound tourists from
official statistics. To obtain the final monthly day- and nighttime
population grids, we summed the respective monthly grids of
specific population groups. For example, the daytime population
grid for January corresponds to the sum of the previously gen-
erated grids for January of workers, students, tourists, and the
non-working and non-studying population (refer to the “Meth-
ods” section for a more detailed description).

The resulting 24 population grids (or temporal frames) cover
the 28 Member States of the EU (as of 2019) at a spatial
resolution of 1 km2, which was selected for its adequacy to
support sub-regional and urban analyses. This set of multi-
temporal population grids represent a typical working day of the
month. The variation between workdays and weekend is not
addressed. The nighttime frames represent an ideal situation
assuming the whole population is at their place of residence or
lodging to rest, whereas the daytime frames represent a situation
whereby everybody is assumed to be at the location of their
primary activity such as working or studying during core working
hours. As such, in-between daily variations of population are not
taken into account (e.g., commuting, pre- or after-work activities,
etc.). The reference year for population data is 2011, to match
with the latest round of the European censuses.

Analysis of spatio-temporal patterns. A three-dimensional ren-
dering of the population density at nighttime and daytime for the
city of Milan, Italy, and surrounding areas, based on the produced
dataset, is displayed in Fig. 1. It reveals substantial differences in
the distribution and concentration of population between the two
periods. To further illustrate the results, Fig. 2 shows the absolute
differences in population per 1 km2 grid cells between day- and
nighttime (yearly average), and between August and January (at
night) for three selected areas in Europe. The top three maps
provide a spatially explicit representation of daily variations in
absolute population. For example, Paris, France, is characterized
by a net gain in population in daytime in a rather large area
corresponding to the city core, resulting from a large concentra-
tion of economic activities, surrounded by a belt of predominantly
residential areas that lose population in daytime. Although much
smaller, the city of Lisbon shows a similar pattern, whereas in
Milan the areas with higher population densities in daytime
appear more scattered. Differences between August and January
also have very distinct spatial patterns. The historical core of Paris
clearly gains population in August compared to January, whereas
most of its surroundings display a net loss. Some positive hotspots
are visible in areas such as the Charles De Gaulle airport and
Disneyland. In the south of Portugal, population in August out-
weighs the population in January, both in the historical center of
Lisbon and the in southernmost coastal areas of Algarve. Finally,
in the North of Italy, all the Milan metropolitan area loses
population in August, whereas gains are observed around the lakes
Maggiore, Como, and, even more noticeably, Garda.

To further illustrate the insights that can be extracted from the
produced dataset, we investigated some spatio-temporal char-
acteristics of the largest urban agglomerations in Europe. To
select them, we used the city/greater city extents defined by
Eurostat57. This definition was designed to improve compar-
ability of city statistics and applies a fixed set of criteria related to
urban morphology, to consistently characterize city limits
irrespective of national definitions. For each of the listed 800+
cities/greater cities, we summed the population in day- and
nighttime based on yearly average grids and selected those whose
day- or nighttime population is above 1 million people in 2011,
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resulting in a sample size of n= 34. On average, daytime
population outweighs nighttime population in Europe’s largest
urban agglomerations. The average day-to-nighttime ratio for the
sampled cities is 1.097 (σ= 0.098). The highest ratios were
observed in Budapest and Warsaw (1.31–1.32), followed by
Brussels (1.24), whereas the three Spanish cities of Madrid,
Barcelona, and Valencia, together with Athens and Stockholm,
display surprisingly low ratios in the range 0.94–0.99. On average
for the sampled cities, and based on yearly averages, the
composition of the daytime population is 48.9% employees (σ=
7.0%), 22.7% students (σ= 3.0%), and 1.2% tourists (σ= 0.7%).

The remainder 27.2% of the population correspond to the non-
working and non-studying residents (Supplementary Table 1).

As the selected 34 cities have a relatively large size (�x=
776.9 km2, σ= 464.4 km2, see Supplementary Table 1), high
within-city variations of diurnal and nocturnal population
densities are expected. A common way to characterize urban
densities is by creating profiles describing the decay of population
densities as a function of distance to city centers58. With our
multi-temporal population grids, it is possible to compare day-
and nighttime population density profiles for European cities for
the first time. In Fig. 3, we plot the average population density
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gradients around city centers with a spacing of 500 m. These
concentric rings typically take the town hall as center and
consider only the land area to avoid distortions in coastal or
waterfront cities. Population densities and distance to center were
rescaled as prescribed by Lemoy and Caruso59 to make the radial
population density profiles comparable across cities of different
population sizes, which, in our sample, range over one order of
magnitude. The rescaling makes all cities comparable in
dimension to the most populous city in the sample (i.e., Paris).
Without rescaling, the curves cannot be compared across x and y
axes, as more populous cities tend to be denser and extend over a
larger geographical area to accommodate the extra population59.

Consistent with recent literature59–61, nighttime population
densities are highest at or nearby the city center and then decay
with increasing distance from the city center, fairly well
described with a negative (inverse) power law function. Daytime
population densities show a similar profile but densities at the
city center are significantly higher than at nighttime and descend
more abruptly. Although population density distribution shows
great variation per city based on local conditions, its relation
with the distance to city centers is remarkably stable within our
ensemble of cities, as indicated by the high R2 obtained of 0.844
and 0.754, with n= 1360 (34 cities × 40 concentric ring
measurements) and p-value < 0.0001, for daytime and nighttime,
respectively (Fig. 3a, b).

In addition, Fig. 3c plots the average profile of the ratio
between day- and nighttime population, peaking at 1.9 in the city
center and descending rapidly until a distance of 5 km from
where it hovers just above 1. The spread around the mean widens
after a distance of 15 km, owing to the diversity of local settlement
geographies. Day- and nighttime density profiles for each
sampled city can be found in Supplementary Figs. 2–6.

To get a first impression of typologies of spatio-temporal
behavior in our sample of cities, we apply a clustering algorithm to
find similarity between cities in the ratios of day- over nighttime
population densities. We applied k-means that is a commonly
used, straightforward partitional algorithm62. Our clustering relies
on the rescaled distance from the city center of the first 30 rings
(i.e., 15 km radius) on the x-axis and the ratio of densities on the
y-axis. It is noteworthy that the clustering is applied on the
aggregated one dimensional description of our cities and does not
refer to its spatial distribution in geographical space for which
other clustering approaches would be more appropriate (see, e.g.,
Sander et al.63). We chose four clusters based on the analysis of the
within groups similarity for the result of the k-means run for a
pre-specified number of clusters from 2 to 15. Figure 4 shows the
resulting day-to-nighttime ratio profiles for the identified clusters.
The cluster in Fig. 4b is the most distinct, as city centers appear to
be predominantly residential and only towards the periphery
daytime densities surpass nighttime densities. This is the smallest
cluster, composed of the three Spanish cities in the sample
(Madrid, Barcelona, and Valencia) plus Lyon, France. The other
clusters all show a decreasing ratio from the center outwards.
However, in the cluster in Fig. 4c the densities are much higher in
the center than in cities belonging to the clusters in Fig. 4a, d.
Conversely, the main difference between the clusters in Fig. 4a, d
is that in the former the ratio picks up after 5 km, signaling major
employment hubs or satellite cities close to the main city, whereas
in the latter the ratio drops gently but steadily until a longer
distance from the city center.

Quality assessment. To evaluate the reliability of the produced
population grids, we calculated the allocation accuracy for areas
where adequate reference data were available. We obtained
census-based estimates of day- and nighttime population for the

whole of Italy and Portugal per municipality. In addition, we
obtained similar data specifically for three cities in Spain (Madrid,
Barcelona and Valencia) to verify the reliability of the surprisingly
low estimates of the day-to-nighttime ratios found for those cities.
Finally, for Belgium, we estimated the day- and nighttime
population based on data procured from a Mobile Network
Operator. A validation of the monthly population variation was
not possible to perform due to the lack of adequate data at sub-
regional level. However, in our grids, regional seasonal curves of
inbound tourists and school holidays are both based on official
sources (see “Methods”).

Table 1 contains the results of the cross-comparison. The
results show an almost perfect agreement with the nighttime (i.e.,
residential) population records from the censuses of Italy,
Portugal, and Spain. This result is not surprising, as our
nighttime population distribution is identical to the census-
based GEOSTAT grid (see “Methods” section). On the other
hand, the daytime population grid obtained a very consistent
allocation accuracy of nearly 93% in these countries. The
comparison against mobile network operator-based data for
Belgium reveals a lower degree of agreement. Two chief reasons
explain this outcome: the substantially smaller size of spatial
zones and the conceptual differences between our multi-temporal
population grids and the human activity measurements obtained
from this source. Notwithstanding, it is worthwhile noting a small
spread between day- and nighttime accuracies, suggesting that the
quality of the day- and nighttime grids is comparable.

For the three Spanish cities mentioned above, we calculated the
day-to-nighttime population ratio based on the census data. The
obtained ratios were 1.014 for Madrid, 1.006 for Barcelona, and
0.963 for Valencia, which compare to our estimates of 0.981,
0.954, and 0.948, respectively. Although our ratios appear lower
than what census data suggest (likely due to an underestimation
of daytime population density within the Spanish cities), the
peculiarity of the Spanish cities is corroborated.

Discussion
Considerable progress has been made in recent years in mapping
place-of-residence population distribution at large scale4.
Although of crucial importance for many applications20, such
grids are a limited representation of reality, roughly corre-
sponding to population densities during nighttime. Assessments
of population exposure to natural, health, and technological
hazards, adequate planning of transport and social infrastructure
in cities and regions, and the study of functional urban areas64

require knowledge of the changing population distribution in
temporal cycles resulting from human mobility.

Data from sources such as mobile network operators, sensors,
or social media provide geolocated measurements of human
activity at high spatio-temporal resolution, but have a number of
limitations such as restrained data access and data incon-
sistencies. In this study, we developed an approach to model
spatio-temporal population for large areas in a consistent man-
ner, and that is not constrained by the latter limitations. The
employed approach can be referred to as multi-layered dasy-
metric mapping and it combines official statistics on population
groups (i.e., residents, workers, students, and tourists) with
geospatial data from conventional (e.g., mapping agencies), as
well as emerging data sources (e.g., voluntary geographical
information). The resulting population grids capture both intra-
day and monthly population variations at 1 km2, making this
dataset the only one of its kind at continental scale. As the
method models individual population groups instead of total
population counts, it is also thematically richer than what could
be achieved with mobile-phone records alone.
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The performed data integration was challenging due to the
volume and variety of data in terms of formats, definitions,
nomenclatures, and/or semantics. The long and intricate work-
flow to combine such a variety of data inputs, each with its own
inaccuracies, led inevitably to a propagation and accumulation of
error in the final product too. Knowing the accuracy of the
produced dataset is necessary to inform the users of the product.
Therefore, designing a robust quality assessment strategy was no
less important and challenging as the modeling per se. The metric

selected for the quality assessment (i.e., allocation accuracy) is a
summary metric that compares estimated with reference popu-
lation for a set of spatial units within a study area. It can be
interpreted as the share of the population stock that has been
allocated to the correct spatial units. The allocation accuracy is
affected by conceptual differences between the two instances
being compared. Although our grids represent an ideal or max-
imum population density at both day- and nighttime, data from
mobile-phone operators represent observed mobile-phone user
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Fig. 4 Cluster analysis of EU cities. Ratio between day- and nighttime population densities for the 34 EU cities with a population above 1 million in 2011,
grouped in 4 clusters determined using the k-means method. Each panel (a–d) corresponds to a subset of the 34 cities with a similar spatio-temporal
population profile. Source data are provided as a Source Data spreadsheet file.

Table 1 Summary of the results of the cross-comparison exercise.

Country Spatial zone type No.
of zones

Median
zone size

Reference data source Allocation accuracy Pearson correlation

Nighttime Daytime Nighttime Daytime

Italy Municipalities 8092 21.8 km2 Census 2011 (ISTAT, Italy) 99.2% 92.8% 1.0 0.996
Portugal Municipalities 278 228.6 km2 Census 2011 (INE, Portugal) 99.6% 92.6% 1.0 0.980
Spain Municipalities 53 22.1 km2 Census 2011 (INE, Spain) 99.3% 92.3% 0.999 0.999
Belgium Service areas of mobile-

phone towers
6984 3.0 km2 Mobile Network Operator

(Proximus)
79.8% 78.0% 0.866 0.849
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densities from a single mobile network operator in a specific time
and day of the year. Therefore, deviations between our estimates
and the values from the independent datasets cannot be strictly
interpreted as errors. Lacking fully comparable spatio-temporal
population records, the cross-comparison exercise cannot be
considered a definitive validation, but it corroborated the plau-
sibility of our population grids.

Although these grids are important to enable harmonized and
more detailed analyses across national borders in the European
context, the herein proposed approach can be transferred to any
other region where sufficient data exists (or can be derived) on
population stocks and location of activities. Regarding the latter
aspect, detailed information contained in global products such as
the OpenStreetMap can be of help. The approach is also scalable
to the amount of ancillary data available, obviously requiring
more adaptation and concessions in data-poor environments.

The novel population grids were originally produced at
100 × 100 m cell size but were resampled to 1 × 1 km cells for
public dissemination. This choice reflects our preference for lower
uncertainty of estimates over higher spatial detail and also helps
avoid false precision that could potentially lead to overconfidence
in the accuracy. In the context of risk mapping and assessment,
this cell size is similar or smaller than that of many available
hazard data covering the study area (e.g., pan-European seismic
map65) and is suitable for baseline risk assessment of areas ran-
ging from large urban areas to a whole continent. Notwith-
standing, for operational disaster risk management (e.g.,
preparedness and response) or for hazards with very high local
variance, a higher spatial detail would be desirable. In sum, the
suitability of the 1 km2 resolution equates more to the scale of
analysis and desired level of precision than to the domain of
application.

Another apparent limitation concerns the reference year of the
population data (i.e., 2011). Although certain applications require
more up-to-date information, our grids establish a milestone by
providing a point of reference for future comparison, namely
after the 2021 European censuses become available. Besides,
although cities may grow or decline in absolute numbers, their
internal spatio-temporal structure is not likely to suffer dramatic
changes in short time spans. Tourism seasonality is also rather
stable over the years66. Therefore, for quick assessments requiring
updated population volumes, a rescaling of the herein grids could
be an acceptable compromise until new grids reflecting the cen-
suses 2021 are produced.

The work towards spatio-temporal population mapping is just
commencing and the potential insights that can be obtained from

such data have just surfaced in this study. It is likely to be that the
diversity, quality, and quantity of suitable input data will continue
growing67,68 in tandem with the need for better assessments. For
example, certain applications would benefit from population grids
stratified by demographic and socioeconomic attributes such as
age or income levels, to be effective. To add more dimensions to
spatio-temporal population grids, it may be worth investigating
whether and how to borrow concepts and methods applied to
generate the synthetic populations that underpin agent-based
models69. Another avenue for future work is the increase of the
temporal resolution by integrating temporal signatures of differ-
ent LU types and activities derived from mobile-phone records.

Methods
General framework. We have developed a multi-layered dasymetric approach that
models the spatial distribution of different population groups separately and
according to a selection of covariates derived from novel geospatial data sources.
The methodology follows four interlinked phases (Fig. 5) as follows: (1) estimation
of monthly and regional stocks of population groups; (2) mapping of LU features
relevant to the location of the population groups; (3) dasymetric disaggregation of
population group stocks to their most likely locations within regions; and (4)
quality assessment by means of a cross-comparison against independent datasets
for selected countries.

Estimation of monthly and regional population stocks. Based on their expected
differences in spatial behavior, we distinguish 16 population groups. The basic idea
is that a person’s location is determined by his or her main activity, as he or she is
expected to spend most time there. Students, e.g., can be associated with education
facilities (e.g., schools and university campuses) and workers with a range of service
and production facilities depending on the economic sector they work in. In
practice, we constructed monthly matrices with stocks of these population groups
for each NUTS3 region in the study area for the reporting year 2011 (12 matrices,
each with dimension= 1311 regions × 16 population groups). The NUTS classifi-
cation is a hierarchical system of nested territorial units used for statistical data
reporting in Europe. The NUTS3 level corresponds to country provinces or dis-
tricts and comprises 1311 regions within the area of interest, with a median size of
1717 km2 (NUTS3 version 2010). NUTS3 are aggregations of municipalities,
whereas census zones are small-area units within each municipality. In this study,
census zones were only used directly in the cross-comparison exercise explained
further down.

The 16 population groups include residents, employees, students, the non-
working and non-studying population, and tourists, as detailed next.

Residents correspond to the number of registered residents within a region
(obtained from Eurostat at NUTS3 level). Employees are subdivided in 11
economic sectors based on the NACE rev.2 classification of economic activities
(Supplementary Table 4) and were obtained from Eurostat reflecting the NUTS3
region of work.

Students are broken down in two main educational levels: primary plus
secondary education and tertiary education and above. Student statistics were
available from Eurostat at NUTS2 level. Students below tertiary education were
distributed among the respective NUTS3 regions based on the proportion of the
relevant population age groups. Higher education students were downscaled to

Monthly and
regional popu-
lation stocks

(residents, workers,
tourists, students)

Mapping of
land use
features

Multi-temporal
population grids

Quality
assessment

Multi-layered
dasymetric

disaggregation

Official regional
statistics 

Conventional
geo-data

sources (land
use/land cover)

Unconventional
geo-data

sources (point of
interest data) 

Reference data
(Mobile network operator

and census data)

Fig. 5 Methodological workflow. Representation of the main classes of input data and methodological steps (green boxes) carried to produce and validate
the multi-temporal population grids.
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NUTS3 regions based on the number of enrolled students per NUTS3 available
from the European Tertiary Education Register, reporting year 2011 (https://www.
eter-project.com). In months with more than 50% of school/academic holidays,
students were considered part of the non-working and non-studying population
group. Country-specific holiday calendars for schools and universities were
obtained from existing European-wide inventories70,71.

The non-working and non-studying (N) population group can be associated
with residential areas in both day- and nighttime. It was calculated at NUTS2
level as:

N ¼ U þ R� A� Sð Þ ð1Þ
based on the number of unemployed, U , residents, R, active population, A, and
students, S, from Eurostat. N was then downscaled to NUTS3 level proportionally
to the population size.

In our approach, the monthly variation of the total present population in a
region is primarily linked to inbound and outbound flows of people that visit and
leave regions for any purpose, leisure, and business alike. We refer to them as
tourists and the estimation of their monthly and regional totals involved several
steps. First, annual number of nights spent within each NUTS2 region (Eurostat)
were disaggregated to NUTS3 regions proportionally to the number of bed
places in touristic accommodations available per NUTS3 from Eurostat. The
resulting NUTS3 annual number of nights spent were broken down per month
using regional (NUTS2 or NUTS3) seasonal curves constructed from data procured
from National Statistical Institutes. Finally, we divided the regional and monthly
nights spent by the number of days of each month to obtain the average daily
number of inbound tourists. A detailed account of the methodology and input data
has been published elsewhere66.

From National Statistical Institutes and the Organisation for Economic Co-
operation and Development, we obtained the share of inbound tourists per country
of origin or groups of countries of origin. In the latter case, we split tourists per
country of origin employing a model based on geographical distance and economic
size (i.e., Gross Domestic Product), assuming larger and closer economies draw
higher quantities of tourists. Then we summarized outbound tourists per country
of origin. Finally, from Eurostat we obtained the fraction of tourism going outside
the EU and added it to the previous sum to obtain the total amount of outbound
tourists per EU country. Tourists from countries outside the study area represent
added population to the existing stock and therefore did not need any further
treatment. Tourists from the same country (domestic) or from countries within the
study area (non-domestic) had to be subtracted from their countries and regions of
origin to avoid double counting of total population within the study area. The share
of outbound tourists per region within each country was assumed to be
proportional to their demographic size. The resulting outbound tourists per region
were finally subtracted from the different population groups proportional to their
size.

Mapping of land-use features. LU and LC features are widely used as covariates
in dasymetric population mapping2–4,6,7,20. In this phase, we constructed the set of
geospatial layers to be used as ancillary information in the population dis-
aggregation process. Ultimately, we created two distinct types of input data as
follows: (a) a fine-grained LULC map and (b) a set of activity density layers.

The LULC map was produced by integrating geospatial data from a wealth of
sources. The map is originally based on the CORINE Land Cover (CLC) 2012 map
and nomenclature, but achieves a significantly higher thematic and spatial detail.
The 11 artificial LU classes from CLC are subdivided in 18 more specific classes,
including Production facilities, Commercial or service facilities, Public facilities,
and Airport terminals, which were instrumental for the allocation of certain
population groups. The minimum mapping unit in this new map is 1 ha for
artificial surfaces and 5 ha for others, as opposed to 25 ha in the original CLC data
(see Supplementary Note 1 for more details). The production and validation of this
novel map has been documented in a dedicated article72.

Recent findings indicate that the quality of dasymetric population mapping can
be increased through the integration of Point of Interest (POI) data73. Therefore,
complementary to the LULC map, we built a set of activity layers based on POI and
polygon data extracted from TomTom Multinet and OpenStreetMap, to represent
locations of activities and facilities associated with the presence of students and
workers. The selection of these features was based on correspondence with the
considered population groups (students and workers from 11 economic sectors).
For each population group (e.g., workers in the manufacturing sector), the relevant
features (e.g., factories) were processed into a single binary raster layer with a 100 ×
100 m resolution and were treated as an additional LU class in the subsequent
disaggregation step. For the disaggregation of tourists, we built a layer reporting
touristic accommodation room density based on data from online booking
platforms66. These activity layers were necessary to capture overlapping activities
and because conceptual differences between point-based data and the polygon-
based LULC map that make their integration difficult. In the Supplementary Note
1, we further discuss the adequacy of the used POI data sources.

Dasymetric disaggregation of population. We downscaled each of the 16
population groups originally from NUTS3 regions to 100 m pixels for each month
of the year using a two-tier approach. In essence, the stock of a population group

within a region is first divided over the LU types relevant to that group propor-
tional to the occurrence of these LU types within the region (Eq. 2). Consequently,
population groups can be associated with multiple LU types (see Supplementary
Tables 2 and 3). Conversely, specific LU types may be associated with multiple
population groups, in which case they will co-occur in the same LU. In the second
step, the number of persons per LU type are allocated to individual grid cells based
on built-up density (Eq. 3).

P0
j;r;u ¼ Pj;r �

Qr;u�wj
u

P
u Qr;u�wj

u

 !

ð2Þ

P0
j;r;i ¼

X

u

P0
j;r;u �

dr;u;iP
i dr;u;i

 !" #

ð3Þ

where P0 is the estimated population of a given j population group, in pixel i
within a NUTS3 region r. Q is the count of 100 m grid cells in a region of a given
LU class u and w is a Boolean parameter that establishes the link between LU
classes and population groups (1 if population group j is linked with LU class u,
0 otherwise). The links were based on expert judgment and can be consulted in
Supplementary Tables 2 and 3. Finally, d is the built-up density based on the
European Settlement Map 2012–release 2017 (https://land.copernicus.eu/pan-
european/GHSL/european-settlement-map). In this dataset, built-up density
is the percentage of surface covered by all roofed constructions without con-
sidering building volumes or density of activities. See Supplementary Note 1 for
more details concerning this dataset.

There were some exceptions to this general approach. Residents were
downscaled from the 1 km2 GEOSTAT grid (https://ec.europa.eu/eurostat/web/
gisco/geodata/reference-data/population-distribution-demography/geostat),
consistent with the Census 2011, and employing the same rationale as in Eqs. 2
and 3. The non-working and non-studying population layers were obtained by
applying NUTS3-specific ratios between the non-working and non-studying, and
the number of residents to the number of residents at 100m level. The total number
of tourists per NUTS3 was downscaled twice, generating two distinct grids for each
month of the year as follows: (a) one grid reflecting their nighttime distribution
(based on the touristic accommodation room density layer mentioned above) and
(b) one grid reflecting their daytime distribution (based on a set of LU classes).

In total, the downscaling procedure generates 204 intermediate population
grids, i.e., 12 months × 17 population groups (15 population groups+ 2× tourists),
at a spatial resolution of 100 × 100 m. For each month of the year, the respective
nighttime population grid was the result of the sum of the gridded residents with
the gridded tourists at nighttime. Conversely, the daytime population grid was the
result of the sum of the 15 remainder population group grids (see Eq. 4). The final
24 grids were obtained by aggregating the 100 m pixel values to the target 1 km2

grid cells.

P0
i;r;t ¼

Xn

j¼1

P0
j;r;i where n tð Þ ¼ n ¼ 2 if t ¼ 'nighttime'

n ¼ 15 if t ¼ 'daytime'

�

ð4Þ

Although the final maps are provided at 1 km2 resolution, the disaggregation
was executed at the native 100 × 100 m resolution of the LULC map to leverage the
maximum possible available detail of the input data (resampling the LULC map to
1 × 1 km would result in a gross generalization of the LULC classes). Moreover, this
allowed us to preserve the highest possible resolution for more detailed inspection
of the results.

Cross-comparison. To assess the quality of the produced grids, a series of cross-
comparison analyses was performed for areas where independent night- and
daytime population estimates at sub-NUTS3 level were available. The comparison
was operated at the level of the native spatial units of each independent dataset,
here denoted as m. For this purpose, our population estimates were aggregated
from grid level to the relevant spatial units. For each country c and temporal frame
t, we computed an accuracy metric herein called allocation accuracy, AA (Eq. 5). It
can be interpreted as the percentage of the population stock that has been allocated
to the correct spatial units. Metrics based on the sum of absolute errors are
common in dasymetric mapping evaluation, because they are more robust in the
presence of outliers or for skewed distributions6,7,74. In Eq. 5, the asterisk denotes
the independent dataset.

AAt
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For Italy, Portugal, and Spain, we obtained Origin–Destination matrices with
commuting of students and workers between municipalities from the census
carried in 2011. This allowed us to recreate the likely size of the daytime population
of each municipality by simply subtracting and adding the number of incoming
and outgoing students and workers to the number of residents. These census-based
daytime population values do not include tourists. Hence, for the purpose of the
cross-comparison, we generated grids that did not take into account inbound and
outbound tourists.

We further compared the population totals in our grids for Belgium with a
dataset based on cellphone records from the Proximus, the leading mobile network
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operator in the country, accounting for nearly 40% of the mobile subscriptions. The
number of cellphone records was calculated by Proximus based on signaling data,
so capturing connections between the mobile devices and cell towers at high
temporal frequency. The dataset consisted of mobile-phone user counts at the level
of Voronoi polygons around each cell tower in the country, with a temporal
breakdown of 15 min for a specific weekday outside the holiday season (i.e.,
Thursday, 08/10/2015). Based on this, we produced day- and nighttime frames
based on the average observed counts in the periods 9:30–11:30 a.m. and 3:00–5:00
a.m., to capture core working and sleeping hours, respectively. We dissolved
Voronoi polygons smaller than 1 sq. km with surrounding polygons to avoid spatial
units smaller than the size of our final grids. Although this dataset cannot be used
directly to predict total population, as Proximus covers a limited market share in
Belgium, we assume it reflects the relative presence of population in space and time.
Hence, before applying Eq. 5, we rescaled the number of mobile-phone users to
match the total population in Belgium, assuming a constant market share across
regions, as in previous studies47.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The multi-temporal population grids for the European Union at 1 km2 resolution that
have been generated during this study75 have been deposited in the European
Commission’s Joint Research Centre Data Catalog, with identifier 10.2905/BE02937C-
5A08-4732-A24A-03E0A48BDCDA, and can be accessed at https://data.jrc.ec.europa.eu/
dataset/be02937c-5a08-4732-a24a-03e0a48bdcda. These multi-temporal grids are the
source data for Figs. 1 and 2. Source Data are provided with this paper.

Code availability
The geospatial data processing and analysis were programmed using Matlab and Python,
and using standard packages. The results can be reproduced by employing the equations,
explanation, and parameters provided in the main text and in the Supplementary
Information. Even so, any code produced can be made available upon reasonable request
to the authors.
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